TM-wave radiation from flanged parallel plate into

dielectric slab
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Abstract: Flanged parallel-plate radiation of a
TM-wave into a dielectric slab is investigated.
The Fourier transform is used to represent the
radiation field in the spectral domain and the
boundary conditions are enforced to obtain the
reflection coefficient in rapidly converging series
form. Numerical computations are performed to
illustrate the radiation behaviour in terms of
aperture size, frequency, and slab geometry. It is
found that a single-mode approximate solution
predicts well the radiation behaviour when a
flanged rectangular waveguide is excited in the
TE,, mode.

1 Introduction

The aperture-antenna radiation into a dielectric slab is
an important subject owing to its practical applications
to radomes and spacecraft antennas on re-entry vehi-
cles. A considerable amount of investigation has been
done to understand its radiation behaviour; for exam-
ple, the work in [1-3] deals with radiation of aperture
antenna when the antenna aperture is attached to a sin-
gle dielectric slab. The radiation characteristics of the
rectangular-slot antenna into stratified media are stud-
ied in [4] using the variational technique. TEM-wave
reflection of a parallel-plate waveguide from a dielec-
tric slab displaced from the waveguide aperture is stud-
ied in [5] using wedge diffraction and ray-tracing
techniques. In this paper we re-visit the TM-wave radi-
ation from a flanged parallel plate into a dielectric slab
that is displaced from the antenna aperture. We use the
Fourier transform and the mode-matching technique to
represent the radiation field in rapidly converging
series. Residue calculus is used to perform the branch-
cut integration, yielding the reflection coefficient in
computationally efficient form.

2 TM-wave analysis

Consider a flanged parallel plate radiating into a dielec-
tric slab, Fig. 1. Regions I, 11, III, and IV, respectively,
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denote the halfspace (wave number k, = oV[iege,] =
2n/A;), the diclectric slab (wave number k, = @V[ueges]
= 2m/)A,), the background medium (wave number k3 =
oV[leges] = 2m/A3), and the aperture (wave number ky =
oV[leges] = 2m/A,). Assume that a transverse magnetic
(TM) wave to the z-axis H| is incident on a dielectric
slab. A time-harmonic factor e is suppressed
throughout. In region I the total H-field is
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the Fourier transform pair. In region II the total H-
field is
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where k3 = V[k? - {?]. In region IV (—a < x < a) the
total incident and reflected fields are

H;(J}, Z) = COSap(:v + a)e"fpz (4)
H;(x,z) = Z Cm COS G, (T + a)e ¥m? (5)
m=0

where &,, = V[k?- 2] and a,, = mn/2a. To determine
the unknown coefficient ¢, it is necessary to match the
boundary conditions of tangential E- and H-field conti-
nuities. From the tangential E-field and H-field conti-
nuities at z = d, = d, + b, we obtain
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Similarly, the tangential E-field and H-field continuities
at z = d; yield
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Fig.1 Scattering geometry
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Fig.2  Closed path for contour integration in {-plane

The tangential E-field continuity at z =
yield
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0 and eqn. 7
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where
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Substituting eqn. 8 into the tangential H-field continu-
ity along the aperture (—a < x < g, z = 0) and some
algebraic manipulation obtains
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where Bnp represents the Kronecker delta, g, =
g =..=1,and

Ly = 7 [K—S%—)] Kn(QKa(-Qd¢ (1)

The analytic contour integration of I, is performed in
Section 7.1 to give

Inm = E177,h'r1746'n,7’n + lnm — Tnm (12)
where /£, is a residue contribution at { = %a,, and /,,
represents a residue contribution at { = k, which is a
zero of (o) —04). r,, is a branch-cut integration associ-
ated with a branch point at { = k; (Fig. 2). From eqgns.
10 and 12 we obtain ¢, in rapidly converging series as
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where U is the identity matrix and the elements of
matrices 7 and Q are

_ 5m63(lnm - T‘nm)

bam = (Enhnes + 2maey)e, (14)
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When 2a < 0.5k, a single-mode approximation is
applicable where eqn. 13 becomes ¢, = 0, n > 1,
o = 1 — 2meoacs /[eoeshobo + §oes(loo — 700)] (16)
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3 Numerical computations

The far-zone radiation field and power in region I are
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where
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which is identical with eqn. 19 in [6] and ﬁ Vi(eyley) —
sin® 8]. A becomes maxnnum at angles given by either
dy cos © = mhs/2, b[(ex/e)) — sin? 8] = (21 — 1)Ay/4 or d,
cos 8 = (2m — 1)A4/4, b\f [(er/e)) — sm2 0] = nhy/2. The
reflected and transmitted powers associated with sur-
face waves in regions 1, II, and III are
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where k;y = V[k2 - kf], kp = VIk3 - k3, ks = V[k2 - k3]
and K, Kj3*, K5 are given in Section 7.2, and *
denotes the complex conjugate. The power conserva-
tion requires ¢ + 7, + T, + 73 + p = 1. We compare our
results of Vp with [5] in Fig. 3, thereby confirming a
good agreement when eqn. 16 is used. The number of
modes m used in our computation is one (i.e. m = 0),
which implies no matrix operation is required when 2a
< 0.5A4. Fig. 4 illustrates the angular radiation pattern
for different b, showing the maximum radiation at 6 =
0° occurs when bV[(ey/e;)] = (2n — 1)A/4. When a
flanged rectangular waveguide of dimension (% X 2a, h
> 2a) is excited with the TE;, mode, it is possible to
apply our solution eqn. 16 to the rectangular
waveguide problem by replacing &, in eqns. 4 and 5
with k, = V[k3~ (n/h)?]. In Fig. 5, we consider a flanged
rectangular waveguide radiating into a dielectric slab
with a different slab thickness b. Fig. 5 illustrates that
our simple solution agrees well with [7] when b = 0. As
d; increases, the oscillating amplitude of \/p becomes
less pronounced, thereby approaching 0.42 which is the
reflection coefficient when €¢; = €, = €3 = 2.59 and €4
=1.
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4 Conclusion

TM-wave radiation from a flanged parallel plate into a
dielectric slab has been studied using the Fourier trans-
form and mode matching. A rapidly converging series
solution which is suitable for numerical computation
was obtained and simple condition for predicting a
maximum radiation angle presented. Our single-mode
approximate solution predicts well radiation of a
flanged rectangular waveguide of the TE;, mode.
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7 Appendix

7.1 Evaluation of integral |,
When m + n is odd, I, = 0. When m + n is even, I, is
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We assume that e, has a small positive imaginary part
for analytic convenience. Integrating along the
deformed contour I'j, I';, I3, and T'y in the upper half-
plane in Fig. 2, obtains

an = Emhmdnm — Tnm T an
where §,,, is the Kronecker delta,
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and (...)" denotes the differentiation with respect to .
The branch-cut contribution r,,, along I'; and T is
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7.2
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